Long-term survival rate of stage I-III small cell lung cancer patients in the SEER database - application of the lognormal model

Patricia Tai, MD,
(Acting Director of Radiation Oncology),
Edward Yu, MD, PhD (Radiation Oncologist),
David Skarsgard, MD (Radiation Oncologist)

Saskatchewan Cancer Agency Research Grant Award

Saskatchewan Cancer Agency & London Regional Cancer Center, Canada
Introduction: PCI studies

- Many published studies for small cell lung cancer have short follow-up.
- Although published meta-analyses favor the use of prophylactic cranial irradiation (PCI) in complete responders, the degree of long-term benefit is not well established.
- Some studies show convergence of survival curves with long-term follow-up of patients who received (PCI+) and did not receive PCI (PCI-), while others do not.
Introduction: basis for study methodology

• We studied long-term survival of small cell lung cancer patients in the Surveillance, Epidemiology and End Results (SEER) database, which is a population database and covers 26% of the United States population.

• A parametric statistical model, Boag's lognormal model, was retrospectively validated, using the SEER data and the actuarial Kaplan-Meier method of calculation.
Introduction: What is meant by a “log-normal” distribution

- We are all familiar with the bell-shaped normal distribution for a large sample or population.

- Survival times of a large sample of cancer patients tend to have a high initial mortality and then gradually fall to a low mortality.
Survival time of a large sample or population
The logarithm of survival time is found to follow a normal distribution.
Introduction: What is the use of log-normal distributions?

• Log-normal prediction modelling for long-term cancer survival rates using short-term follow-up data.
• Available for usage for some 50 years.
• A new standard for the 21st century?
Four groups of patients in Boag’s lognormal model

If not lost to follow up,
- Gp 1 patients died from the specific cancer
- Gp 2 patients died from intercurrent disease
- Gp 3 patients were alive and free of clinical evidence of disease
- Gp 4 patients were alive with persistent or recurrent disease.
Survival prediction: *Phase I*

- Goodness of fit of survival time distribution of the uncured group to a log-normal distribution by minimum chi-square method
- Breast (Boag 1949)
- Subsites in Head and Neck (Mould 1976)
- Breast (Rutqvist 1984, 1985)
- 23 cancer sites of UK data (Berg 1965)
- 40 cancer sites of SEER data (Tai 2002)
Survival prediction: **Phase 2**

- Uses short-term follow-up data (e.g. 2-6 years) to predict long-term survival of 10-20 years by maximum likelihood method.
- Validation by comparing with cancer-specific survival rates of Kaplan-Meier calculations: e.g.,
 - Cervix (Mould & Boag 1975)
 - Lung, breast, ovary, larynx, prostate, bladder, cervix, thyroid (Tai 2002)
 - Small cell lung cancer (Tai 2003)
 - Breast (Tai 2003)
Cancer sites with survival times demonstrated to follow lognormal distribution in the literature (*phase 2 validation also performed, i.e. concordance between Kaplan-Meier method and lognormal model.)

- Head and neck cancer: Berg, Mould
- Mouth and throat cancer: Boag
- Thyroid: Tai*
- Larynx, tongue: Mould & Tai*
- Non small cell lung cancer: Berg
- Small cell lung cancer: Tai*
- Intraocular melanoma: Gamel
- Cutaneous melanoma: Gamel
- Breast cancer: Boag, Berg, Rutqvist, Gamel, Haybittle, Royston, Tai*
- Bone sarcomas: Berg
- Cancer of uterine cervix: Mould & Boag*, Berg
- Ovarian cancer: Berg, Tai*, Royston
- Hypernephroma: Berg
- Bladder cancer: Berg
- Prostate cancer: Mould & Tai*
- Gastric cancer: Berg, Maetani
- Lymphoma: Berg
- Chronic leukemia: Tivey
- Brain tumours: Berg
Methods

• From 1988-1991, there were 1060 incident cases of stages I-III small cell lung cancer in the 9 registry areas that comprise the SEER database, of whom 132 received (PCI+) and 928 did not receive PCI (PCI-).

• Two 2-year periods of diagnosis (1988-1989 and 1990-1991) were combined and then patients were followed-up as a cohort for an additional two years.
Results

- The survival time of uncured patients who received (PCI+) and did not receive PCI (PCI-) followed two different lognormal distributions.
Results

• For PCI+ and PCI- patients respectively, the five-year cancer-specific survival rates, calculated using the Kaplan-Meier method and actual follow-up data to the year 2000, were 18±3% and 12±1%. The corresponding predictions, using the lognormal model were 15% and 11% respectively.
Results

- The 10-year cancer-specific survival rates were 10±3% and 9±1%, when calculated by the Kaplan-Meier method, and 12% and 10% as predicted by the lognormal model.

- The available follow-up was not long enough to provide 15-year cancer-specific survival rates by the Kaplan-Meier method, but the lognormal model predicted them to be 12% and 10% respectively.
Results

• The PCI+ and PCI- cancer-specific survival curves almost converged in long-term follow-up.

• The difference in the two survival curves, as calculated by the logrank test (which takes into account the whole duration of follow-up), was highly statistically significant (p<0.001).

Dr. Patricia Tai
Allan Blair Cancer Center
Canada
Discussion

• This log-normal survival prediction method works for all sites as long as not a lot of patients are lost to follow-up.

• Potentially can obtain results faster

• Speed up development of future trials

Dr. Patricia Tai Allan Blair Cancer
Center Canada
Small cell lung Ca example for survival prediction in another dataset

- Saskatchewan Cancer Registry data
- Estimated 10-year Cause-Specific Survival Rate (CSSR) = 13% by log-normal model.
- Kaplan-Meier Method = 15 ± 3%.

(Tai et al, IJROBP 2003;56:626-33)
Cause-specific survival for 122 patients with small cell lung cancer, estimated by the log-normal model versus actuarial survival calculated by Kaplan-Meier method.

(Tai et al, IJROBP 2003)
Conclusions

• The survival benefit with PCI is more apparent in the short-term, and diminishes with longer-term follow-up in the SEER database.

• The lognormal model has the potential to predict the results of on-going prospective PCI trials earlier than would be possible with the use of the Kaplan-Meier method.

• This may become a useful tool in outcome research.